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An introduction to Hopf algebras as a tool for the regularization of relevant 
quantities in quantum field theory is given. We deform algebraic spaces by 
introducing q as a regulator of a noncommutative and noncocommutative Hopf 
algebra. Relevant quantities are finite provided q ~ 1 and diverge in the limit q 
---> 1. We discuss q-regularization on different q-deformed spaces for kdp 4 theory 
as examples to illustrate the idea. 

1. INTRODUCTION 

Thanks to the work done in expressing vector bundles, forms, integration, 
etc., on locally compact topological spaces X entirely in terms of the algebra 
C(X) of complex continuous functions on X vanishing at infinity which forms 
a commutative C* algebra, a generalization of ordinary geometry can be 
introduced. Namely, when expressed in terms of a C* algebra the above 
notions make sense even when the C* algebra is not commutative, therefore 
not of the form C(X) (Connes, 1986). The simplest noncommutative geome- 
tries that have been studied are noncommutative and noncocommutative Hopf 
algebras, corresponding to both quantization and curvature. 

Meanwhile in classical mechanics states are points of a manifold M and 
observables are functions on M; in the quantum case, states are one-dimen- 
sional subspaces of a Hilbert space H and observables are operators in H. 
Observables, in both classical and quantum mechanics, form an associative 
algebra, which is commutative in the classical case and noncommutative in 
the quantum case. So we can think of quantization as a procedure that replaces 
the classical algebra of observables by a noncommutative quantum algebra 
of observables. The noncommutative Heisenberg algebra, i.e., the algebra 

Centre of Theoretical Research, Facultad de Estudios Superiores Cuautitl~in, UNAM, Unidad 
Militar, Cuautitl~n Izcalli, Estado de M6xico, 54768 M6xico. E-mail: suemi@ 
servidor.unam.mx. 

2179 

0o20-7748/95/1100-2179507.50/0 �9 1995 Plenum Publishing Corporation 



2180 RodrJguez-Romo 

that arises because momentum and space are not simultaneously measurable 
(Heisenberg uncertainty principle), is the best example to illustrate this idea. 
Generally speaking, it is expected that even using noncommutative geometry, 
one might nevertheless extend our regular notions of symmetry to the quantum 
world. If we consider the space of states endowed by a group structure, the 
functions on this are observables. To quantize such a system one has to 
construct a noncommutative associative algebra of functions on a locally 
compact topological group space; i.e., a quantum group (Drinfeld, 1986a,b, 
1983a,b, 1985). 

Thinking about quantization of the space-time metric itself, where we 
cannot use path integration techniques to express quantization in terms of 
classical fields, we claim the assumption of a smooth manifold structure for 
space-time to be meaningless in extremely small scales from the experimental 
viewpoint. The problem is that the finer the accuracy in the observation we 
ask for, the heavier the test particle we need; eventually the space-time 
curvature due to both the test particle and the space-time itself can be of the 
same magnitude. In this context, by relaxing the assumption of smoothness 
of the space-time manifold and introducing noncommutative algebraic geome- 
try, we propose a scheme called q-regularization, so we can regulate relevant 
quantities in field theory before renormalizing. The parameter q (qZ 4: - 1 )  
parametrizes the deformation to the noncommutative and noncocommutative 
framework in which relevant quantities in quantnm field theories are finite 
for q ~ 1 and reduce to the unregulated, divergent, physical theory as 
q ~ 1. Namely, as in dimensional regularization, we interpolate consistently 
to dimension 4 - ~, where the relevant quantities are finite (these would be 
infinite at dimension four); in q-regularization we extend relevant quantities 
in quantum field theory to a noncommutative and noncocommutative Hopf 
algebra or quantum group (by introducing the parameter q) where the relevant 
quantities are finite [these would be infinite at q = 1; i.e., in C(X), the 
commutative limit]. 

We present two examples; the first one is constructed in a four-dimen- 
sional representation of a particular noncommutative space previously 
reported (Majid, 1990a). The second example is proposed having in mind q- 
spinors [two-dimensional objects with the generators of A2q/~ Manin's (1988) 
quantum plane, as entries]; constructed by the projective representation of 
the Heisenberg algebra, they are braided in a very specific way to obtain a 
q-deformed space. 

The second example is intended as a first step to approach q-regulariza- 
tion in q-Minkowski space-time. We work out this example in a q-deformed 
space which can be related to both the first example's q-mutator algebra and 
previously reported (Carow-Watamura et al., 1990, 1991) braided two copies 
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of Manin's quantum planes. Since we do not impose reality conditions, among 
others, we are not working in any way in q-Minkowski space-time. 

For the second example we want to learn more about the symmetries 
of our measure; we study a projection in the q-deformed space used and its 
relation to the SUq(2) measure. Moreover, we analyze the null directions of 
the corresponding Hopf algebra that lead to a q-deformed Galilei group. 

This paper is organized as follows; in Section 2 we construct the Manin 
quantum plane out of the noncommutative Heisenberg algebra and introduce 
the q-spinors as a way to link the q-regularization scheme with physically 
meaningful concepts. In Section 3, we present two examples of q-regulariza- 
tion on q-deformed Euclidean spaces for hqb 4 theory. Our scheme can only 
be carried out in a very particular basis for functions defined on the q- 
deformed spaces chosen such that we end up with a Haar weight that reduces 
to an ordinary integration. Further work should be done to generalize this. 
Finally, in order to learn about desired properties of symmetry in this q- 
regularization we study the zero-time projection of the measure we have just 
introduced in the second example in terms of the SUq(2) measure and the 
null directions of the Hopf algebra that lead to a q-deformed Galilei group. 
The quantum Galilei group has been found as symmetry in condensed matter 
(Bonechi et  al., 1992a,b). 

2. FROM HEISENBERG ALGEBRA TO q-SPINORS 

The goal of this section is to link noncommutative Heisenberg algebra 
with two cocycles and q-spinors as defined by Manin (1988). Let us start with 
the fundamental Heisenberg commutator algebra generated by translations on 
phase space (r, p), 

[r i, p J] = ih~  ij (1) 

[r i, rJl = [pi, p j] = 0 

We propose the following translation operator on phase space: 

U(a, b)  : e i(a'p-b'r)/h where a and b E R n (2) 

In a ray or projective representation, equation (2) obeys the composition law 
(Djemi, 1992) 

U(a2, b2)" U(al,  b l )  = e 2~rict2 (r;(al,bl)(a2,b2)). U(al + a2, b!  -4- b2) (3) 

where al, bl, a2, b2 ~ R n and, for a free particle in quantum mechanics, the 
two cocycle o/. 2 for translations in the phase space is given by 

2~e~2(r; (al, bO, (a2, b2)) = 1 (al" b2 - a2" bl) (4) 
z n  
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Let us now consider the following infinitesimal Galilei transformation 
(Djemi, 1992): 

r '  = r + a ~ = r + h u ,  r " = r + a 2 = r  (5) 

p' = p + b ~  = p ,  p " = p + b z = p + h u  

where u is a unit vector in R n. 
If we define 

q = e -ih (6) 

impose (5) as symmetry in equation (4), and substitute the result in equation 
(3), it is straightforward to prove that 

U(hu, 0)U(0, hu) = qU(O, hu)U(hu ,  0) (7) 

is a realization of A(q2/~ i.e., this fulfills the noncommutative algebra of 
Manin's (1988) quantum plane. 

Like other authors (Carow-Watamura et al., 1990, 1991), we call the 
following two-dimensional object a q-spinor (more properly, Weyl q-spinor): 

Z 2 [U(0, hu)J '  i.e., p = 1, 2 (8) 

Below, in Example 2 we use an approach (Carow-Watamura et al., 1990, 
1991) in which the q-deformed space can be related to the tensor product 
representation of two q-spinor spaces called (Z i, 2i). A pair of q-spinors (i 
= 1, 2) is introduced in each space. Hereafter Greek indices are for spinor 
subscripts and Roman indices for different spinors. We also require the 
following braiding: 

Z 'Z  j = ~J,i,2J'Z i' (9) 
^ . .  

where ~,J/, is the Yang-Baxter matrix for SLq(2, C). 

3. EXAMPLES OF q-REGULARIZATION 

In this section we present two examples of q-regularization for hqb 4 
theory on two apparently different q-deformed spaces, both Euclidean. The 
first case involves a four-dimensional version of a Hopf algebra previously 
reported (Majid, 1990a); we propose to extend momenta internal to Feynman 
loops to a noncommutative structure. The second example involves a braided 
4-dimensional representation of Martin's quantum plane (so-called q-spinors) 
where some particular transformations on the generators of this Hopf algebra 
relate to the one used in Example 1. Actually, Example 1 is posed in order 
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to better explain Example 2, which is considered as a preliminary step for 
formulating q-regularization on q-Minkowski space-time. 

Example 1. From Majid (1990a), let us consider the Hopf algebra L 
generated by (ll, 12, 13, 14) and 

[lk, lj] = iljQ' for k = 2, 4 and j  = 1, 3 (10) 

where Q' = (1 - q)l/2. Define on this the antipode map as 

S(Ik) = --Ik, S(Ij) = --q-iljq-lk/a' (11) 

The coproduct map is given by 

Alk = lk | 1 + 1 | lk, AIj = lj | 1 + qtk/a' | lj (12) 

and the counit is 

~(lD = e(lj) = 0 (13) 

Additionally, L can become a C* algebra if we define 

l'~ = lk, 17 = lTq i/2 (14) 

For every finite-dimensional Hopf algebra there is an invariant integration, 
the Haar weight f ,  unique up to normalization. 

A basis 

n a l ' " a 4  ~ eial l l  . . .  eia414 

where an ~ C, with C complex, is chosen; then the dual basis Dal.. "a'4 is 
given via 

nar"a4Oal...a,4 = 8(a[ - al) - ' '  ~(a~ - a4), a" ~ C (15) 

where the Dirac delta functions 3 have been defined with respect to the usual 
Lebesgue integration; then it is straightforward, by analogy with the case 
of finite-dimensional Hopf algebras (Larson and Radford, 1988), to prove 
(Rodr/guez-Romo, 1994) 

f ( f = [2'rrS(O)]k f ~ d a j  f '(O, a j ( 1 - -  q-i)) (16) 

for all j and f suitable of being written on the basis B al'''a4. In the case 
q v ~ 1 and assuming proper analycity and decay o f f '  (the Fourier transform 
of the Wick ordered function f) ,  (16) might be finite for suitable f. If q = 1, 
equation (16) certainly diverges. 
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We propose, from ~4 theory, to q-regularize the vertex corrections with 
contributions given by 

( - - i K ) 2 f f  d4l / / (17) 
F(s) - - - ~  (2"rr) 4 (l - p)2 p~ - ie l 2 - po 2 + ie 

where s is any Mandelstam variable. These corrections diverge 
logarithmically. 

Let us extend the internal momentum in the Feynman loop in F(s) to the 
noncommutative algebraic framework by considering instead of the standard 
Lebesgue integration the Haar weight above defined on the basis B ar. "a4, thus: 

x02~(0) 
['q(S) -- 2(2,rr)3 

x [p~ + (Ij (1 - q-") - pj)z _ Ix~ + iel[(Ij (1 - q-i))2 _ ix2o + i~l (18) 

where lj are the odd components of the dual internal momentum that was 
extended to noncommutative geometry and Pk (Pl) are the even (odd) compo- 
nents of the external momentum in standard Euclidean commutative four- 
dimensional space-time. Unless q = 1, (18) is finite; thus we have a regulariza- 
tion scheme. An additional attempt at q-renormalization has recently been 
presented (Rodriguez-Romo, 1994). Since we extend to the noncommutative 
framework only the internal momentum degrees of freedom, the lack of 
locality resulting from this extension has no experimental consequences in 
this case (Fredenhagen, 1981). 

Example 2. Let us consider the Hopf algebra H generated by 1 and 
(a, ~, b, b) such that 

[b, b] = 0, [a, ~] = 2(q -l  - q)qO/2Q')(b+3~) 

[b, a] = [b, a] = 2Q'~, [-b, ~] = [b, -d] = 2Q' a (19) 

The coproduct map A in this Hopf algebra is 

A a = a |  + q b / Q ' |  A b = b |  + l |  

A - d = - d |  1 + q g / O ' |  A b = b |  1 + l |  (20) 

the antipode map S is 

1 S(a) = ~ {_(q-2 + q2)aq-bIQ" + (qZ _ q-2)-~q-b/a'} 

1 S(~) = ~ {(q2 _ q-2)aq-g/O' _ (q-2 + q2)~q-g/a'} 

S(b) = - b ,  S(-b) = --b (21) 
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and finally the counit map e is 

e(a) = r = r = e(b) = 0 (22) 

Furthermore, we can make this into a *-algebra via 

b* = b, -b* = -b, a* = aq i/2, -d* = "~qi;2 

iff q is a primitive root of unity such that q4 = 1. 
We would like to relate H with 

= a z/0 6~ a 2/0 i, j = 1, 2 X ij Z iZ  j E - -q  ~ - - q  , (23) 

where 2i and ZJ were introduced in Section 2 [Equations (8) and (9)]. It is 
straightforward to provethat__AZq/~ | A 2/~ is isomorphic to the real algebra 
generated by 1 and (A, A, B, B), where 

_ m 

A = X + Y ,  A = X - Y ,  B = Z + T ,  B = Z - T  (24) 

and 

X = q -1 /2X11  , Y = q - 1 / 2 X 1 2  

Z = q - i X 2 1  - q X 2 2  X21 + X22 
(q + q-1)1/2 , T -  q(q + q-1)u2 (25) 

To relate H to a 2/~ 6~ a2/0 let us rewrite the (A, A, B, B) generators, for .~q ~ ~*q , 

q v~ 1, as follows: 
R 

A = a ,  A = K  

B = qO/a', ~ = q-~la' (26) 

On the other hand, it is straightforward to prove that in H, ((a + ~), (a - 
~), b, b) corresponds to the algebra L with generators (11, 12,/3, 14) defined 
in Example 1. If q ---) 1, the algebra becomes the commutative algebra of 
functions on the space generated by (a, K, b, b) and the unit. 

As in Example 1, we proceed by defining the Haar measure f f  as a 
map H ~ C such that 

Here we have expressed the action of A on f as Af = J~l~ | f(2)" We remark 
that it is well known in the theory of Hopf algebras (Majid, 1990b) that (27) 
is the dual formulation of the usual left invariance. 
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By analogy with the case of finite-dimensional Hopf algebras (Larson 
and Radford, 1988), we use the following formal expression for (27): 

fly= Trl~LfS z (28) 

where Ly stands for f acting by left multiplication on H. 
From (21) it follows that 

S2(a - -a) = w - l ( a  - a); S2(a + -d) = w - t ( a  + ~) (29) 
S2b = b; S2-b = -b 

where w -1 = f (q )  and limq~l w -1 = 1. This shall be used below. 
To compute f f  we propose the following basis in H: 

FXtX2,X3X4,xsx6 = (FXtX2, FX3X4, FXsX6) 

= (eihl-beiXZ(a-a-)/2, eih3beiL4(a+a)12, eih5"beih6b) (30) 

where 

FXlXzx3x*xsx6 E H and (hi, •2, h3, X4, h5, X6) E R 

We associate to F ~'Ix2"x3x4A5x6 a dual basis 

F~ix~x~xa, x~x ~ E (Aq ~~ | Aft~ t 

where (Aq 2/~ | ~0, A 0 ) is the dual Hopf algebra of A2q/~ | AZq/~ such that 

FXlX~X3x4,XSX6Fh,lx~x~)d4,x,sx,6 

(31) 

In the basis (30) we have introduced six parameters hi, one for each generator 
involved. They are dual variables to the noncommutative parameter. 

Theorem 1. The Haar weight f f  F xlx~• defined in (28), for a basis 
F xlx~'h3h4"hSx6 chosen as in (30), reduces to an ordinary integration. 

Proof  From (19) we know that 

[b, (a - ~)] = - 2 Q ' ( a  - -d) 

[b, (a + ~)] = 2Q'(a + -~) 

[b, b] = 0 

Note that (a + a)/2 = X, (a - a)/2 = Y in (25). Substituting the basis given 
by equation (30) in (28) and using the Glaube formula for operators, we 
obtain the ordinary integral 
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f f FKIK2"K3k4'K5h6 

= ( I ~  d)k; d~k~ ~)(~k~ - (~k, + )kl))~(~, ~ - (X2e-2iX'lQ'+ w-l~k~)), 

]dk~ dM 8(k~ - (h3 + X~))~(M - (k4 eaix'3a' + w-lM)),  

I ~  d)k; d)k; ~()k; - ()k 5 + ~;))~()k; -- ()k 6 + )k;))) (32) 

QED 

The basis F xlxp-'x3k4'xSx6 in equation (30) admits an expression in terms 
of the q-spinor defined in (8) out of the projective representation for the 
Heisenberg algebra. Furthermore, this basis can be rewritten in terms of  q- 
Majorana spinors built using q-Weyl spinors in analogy with the commutative 
algebraic formulation. As a result of this we can show that it does not matter 
if we think in terms of integrating out noncommutative light-cone coordinates, 
Weyl q-spinors, or Majorana q-spinors degrees of freedom; the result is 
exactly the same. Furthermore, the Haar measure f f  defined on H can be 
written in terms of ordinary integration. 

Theorem 2. For a suitable f ~ H that can be expressed on the basis 
F Mx~x3x4'xSx6 given in (30) (or any of their different q-spinor representations), 
f f  f as defined in (28) contains a component that can be q-regularized, i.e., 
is finite provided q r 1, but infinite in the limit q = 1. 

Proof. It is straightforward to show that for any function f defined on 
H with basis F MK2"K3M'hSx6 the following transformation holds: 

= .f': = f ~  a~l d'A.2f(X 1, h2)F xlx2 f 

+ Ifoo dk3 dMff(h3, M)F x3x4 

+ f ~  dh5 dK6f(Ks, K6)F xSx6 (33) 

where we express_f as a normal ordered form o f f ' ,  in terms of the generators, 
namely, putting b to the left of a, K, and b in the light-cone coordinate 
approach; {tr 3, tr ~ } to the left of {tr +, or-} in the Weyl q-spinor formulation; 
and finally {~3, ~/0} to the left of {~/1, .y2} in the Majorana q-spinor basis. 
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Here (or ~ cr 3, ~+, or-) and (,,/0, .vl, ,y2, .y3) are q-deformed Pauli and Dirac 
matrices (Carow-Watamura et al., 1991). Additionally, f is the Fourier trans- 
form o f f ' ,  i.e., 

f(hi, k:) = (2"rr) -2 dDi dDjf'(btiDj)e-it*iXie -il*jxj 
o o  

i, j = (1, 2), (3, 4), (5, 6) (34) 

Then carrying out integration on h~, h3, ks, h 6 ,  w e  obtain 

f f f = f~ dk~ dh~ d~2 f(O, ~2)~(h~(1- w-1) - h.2e -2ix'lQ') 

+ I ~  dh~ dhf, d~k 4 f(0,  X4)~(X~(1 - w -1) -- ~k4 e-2i~''3Q') 

f ~  dk~ dX~ f(O, O) (35) + 

which, after changing the order of integration and integrating o n  ]k 2 and 
M, becomes 

f f f = f oo dX[ eX"o'](O, X (1- w-')e2*X"~ 

+ _I~_~ arh~ dh~ e-X'3Qf(0, k~(1 - w - 1 ) e  -2ik'3Q') 

+ dX; y(O, O) (36) 

The last term in equation (36) corresponds to the ordinary divergent term 
that appears in the standard commutative algebraic formulation of quantum 
field theory; there is no way we can recover a finite term out of this in the 
limit q --+ 1. Checking the noncommutative Hopf algebra generated by X ~j, 
we find why this is so; T is central with respect to (X, Y, Z), so this part of 
the Haar measure is not really defined on a noncommutative algebraic variety. 
Therefore we can extract out of f f  f a q-regularizable part 

f -  d'h5 dh6f(0, 0) 

[2~8(0)1 ' - = d~.2f(0, h~(1 - w-l))  
c o  

r w + 
3-o~ J 
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But limq_~l w -1 = 1; thus, as q ---> 1, f f f  - f ~  dh'5 dk~f(0, 0) diverges; 
in contrast, at q :# 1 and assuming suitable analycity and decay o f f  to allow 
contour integration, (37) can be made finite for suitable f; moreover, this is 
proportional to (1 - w-l)  -1. 

In the limit q ---> 1, the transformation described in (26) is nonsense, 
because in this limit the map H --> L is singular. We remark that this does 
not mean that the q-regularization scheme performed on the algebra H and 
described up to here is lacking sense in the case q = 1, but only the map 
that relates this with A2q/~174 A~/~ We are interested in this map because 
it might be of some help in the future construction of q-regularization on 
q-Minkowski space-time, Further work needs to be done in this 
direction. QED 

For obvious reasons, the vertex correction for h~b 4 theory described in 
Example 1 is suitable for being q-regularized on H just as in Example 2 it 
was on L. Further work should be done to generalize these examples to more 
interesting cases. Since this scheme is strongly basis dependent, a complete 
analysis of the class of functions suitable for being q-regularized on physically 
interesting bases is needed. Note that q-regularization may be considered 
equivalent to dimensional regularization in a similar sense to the McKane 
(1980) and Parisi and Sourlas (1979, 1980) case. 

4. C O M M E N T S  A N D  R E M A R K S  

In the paper wherein Woronowicz (1987) proves the existence and 
uniqueness of the Haar measure, i.e., the unique state invariant under left 
(and simultaneously right) shifts, for any compact quantum group, he proposes 
the following q-integration on SUq(2): 

fq f = (1 - q) ~ qkf(qk) for any f �9 SUq(2) (38) 
0 k=O 

On the other hand, let us set T = 0 in (25); from equation (7), we get 

Uz(hu, 0) = ql/Zal(0, hu), U:(0, hu) = -q-I/Zal(hU, 0) (39) 

This is equivalent to setting 20 = e0~Z~ in equation (9). Thus 

A = x + y -A = X -  y B =-B = Z 

We write X 1 = �89 + A), X 2 = �89 - A-), and X 3 = B; then in terms 
of this (X 1, X z, X 3) 3-dimensional vector representation, we propose the 
following basis: 

F xlx2'x3x4 : (eihlX3eix2xl, eik3x3eix4x2) (40) 
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where X 1 = x 1, X 2 = x 2, and X 3 = q~3/a,, as was done in (26). 
From work on the category of  representations of a Hopf algebra we can 

write the action of any function f of the Hopf algebra SUq(2) on its vector 
representation V through the corresponding basis, 

f" eJm = ~ Jae i �9 e~ E V, Vf E SUq(2) (41) 
i= + ,-,O 

where e+ = X +, e_ = X- ,  e0 = H is the SUq(2) basis and f i  ~ C. 
From equation (41) it is clear that the Woronowicz map f f ---> C for 

the SUq(2) Haar measure induces a f f f---> C map for the vector representation 
of the Hopf algebra SUq(2), inducing another for A, which is written in terms 
of SUq(2). We define the A matrix as 

A{~),) =- ~I~,M~,; M E SLq(2, C), 2(/1 ~ SLq(2, C) (42) 

Thus, the similarity of equations (34) and (38) can be understood in these 
terms. 

From these two facts and the obvious similarity of the q-integration 
carded out in equation (34) and the one depicted in equation (38), we think 
that the q-time zero projection in the q-deformed space defined for the second 
example corresponding to the ~ t  = M-1 identification reduces f f  f - 
f~_~ dX'5 dh;f(O, 0) in Theorem 2 to the Haar weight on the vector representa- 
tion of A written in terms of SUq(2). 

Finally, we show how null directions in A can lead to the quantum 
mechanical Galilei group. By imposing the null bi-ideals 

u~ = 0, u~ = 0 

1 2  2 1  1 
UlU 2 = / /281 = 

with uj ~ M (the same hold for -i -i u j, with uj ~ AT/), we obtain a direct product 
representation of  the quantum Galilei group. 

We can see this from the viewpoint of  cohomological formalism. We 
construct the quantum mechanical Galilei group, choosing the Galilei 
transformations 

r '  = r + v t ,  p '  = p + m v  (43) 

where m is the particle mass. 
Then equation (2) is transformed into 

U ( v )  = e iv ' (p t -mr) /h  ( 4 4 )  

and its action on a wave function qt(r) introduces a phase (one-cocycle) 
Ctl, i.e., 
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U(v)-x[Y(17)  --- e 2i'rral(r;v). q~(r + v 0  ( 4 5 )  

We shall consider this one-cocycle as trivial, so 

eel(r; v) = See0 = ee0(r') - ee0(r) (46) 

where ee0 is a function, called the 0-cocycle, which depends only on r. 
Therefore, the group law of the quantum mechanical Galilei group for 

translations on phase space [or U(1) extended Galilei group] is expressed 
such that 

e 2i'nc~0(r') = e 2i~[a0(r)+++al(r;v)] (47) 

where 

27req = -~ m y .  r + -~ mv2t (48) 

and + is the central parameter of the quantum mechanical Galilei group. 
On the other hand, we require 

to belong to the quantum mechanical Galilei group; i.e., M (equivalently)17/) 
must fulfill (5). It is straightforward to prove that, in this case, the following 
null bi-ideals have to be imposed on M (equivalently on M) 

u~ = 0, u~ = 0 

1 2  2 1  
g l U  2 = U2U 1 = 1 (49) 

in order to end up with a group that has only one generator, as should be. 
In addition, we can prove that the null hi-ideals once imposed on M 

SLq(2) (thereby defining the quantum mechanical Galilei group) produce the 
following pairing: 

(u 1,t~ k) = R ~  = 0 ,  k,m,s = 1,2 

(u~, t~ k) = R2km = 0 

l 2 = 1  (UlU2, its k) D l k  D2m -~- l ,  lml~2s 

2 1 = 1 (50) (U2Ul,  ffs k) = D2k D l m  l~2ml,  ls 

where tim k (k, m = 1, 2) are generators of the dual Hopf algebra for SZq(2) 
and R~ (i, j ,  k, l = 1, 2) are entries of the Yang-Baxter matrix Rc associated 
with the quantum mechanical Galilei group. This does not determine RG, but 
restricts the solution to block-diagonal matrices. 
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Finally, if we impose the null directions given by (50) in A, we obtain 
the following representation of the quantum Galilei group: 

A = 

(a[)-~u~ 0 0 0 
alu[ + q2(tJ]uI) -1 q2(alu ] - (t,Tlu]) -1) 

0 0 1 + q2 1 + q2 

o o al(ul)-'  o 
t~lu] - (a[u]) - t  q2(alul + (/~]u]) -1) 

0 0 1 + q2 1 + q2 

(51) 

Summarizing, in this paper we have introduced the concept of q-regulariza- 
tion and used the projective representation of the noncommutative Heisenberg 
algebra to construct the Manin quantum plane, thereby defining q-spinors. Using 
this as a building block, we first presented a q-regularization in terms of a 
four-dimensional rcpresentation of a particular two-dimensional noncommutative 
space. We also studied regularization on a q-deformed space that can be mapped 
into a particular braided product of Manin's quantum plane and related it to the 
first q-space we studied. We showed how to extract, from relevant quantities, 
finite components (provided q 4: 1) that can become infinite at q = 1. To compute 
the Haar weight, we propose a particular basis projected from q-deformed spaces, 
so the functions to be q-regularized are to be considered on this frame of reference. 
An example for X~b 4 field theory was presented. Additional work must be done 
to generalize our scheme to any arbitrary function on a q-Minkowski space- 
time basis. 

Finally, in order to learn about the general scheme and its symmetries, we 
studied the T = 0 Haar measure in terms of the SUq(2) measure and the null 
directions in the Hopf algebra that lead to a quantum mechanical Galilei group. 

Although in this paper we can q-regularize only a class of suitable functions 
(restricted by the particular basis chosen), we think that the full prescription, 
derived from physical considerations, might be used to make relevant quantities 
in field theory finite at q :~ 1. 
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